博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 551 字,大约阅读时间需要 1 分钟。

问题

若矩阵A满足 A + A T = I A+A^{\rm{T}}=I A+AT=I,则A可逆。

证明一

反证法。假设A不可逆,则

∃ x 0 ≠ 0 \exists{x_0}\ne0 x0=0,使得 A x 0 = 0 A{x_0}=0 Ax0=0,则
x 0 A T = ( A x 0 ) T = 0 T {x_0}{A^{\rm{T}}} = {(A{x_0})^{\rm{T}}} = {0^{\rm{T}}} x0AT=(Ax0)T=0T

∴ 0 ≠ x 0 T x 0 = x 0 T ( A + A T ) x 0 = x 0 T A x 0 + x 0 T A T x 0 = x 0 T 0 + 0 T x 0 = 0 \therefore 0 \ne x_0^{\rm{T}}{x_0} = x_0^{\rm{T}}(A + {A^{\rm{T}}}){x_0} = x_0^{\rm{T}}A{x_0} + x_0^{\rm{T}}{A^{\rm{T}}}{x_0} = x_0^{\rm{T}}0 + {0^{\rm{T}}}{x_0} = 0 0=x0Tx0=x0T(A+AT)x0=x0TAx0+x0TATx0=x0T0+0Tx0=0

矛盾,所以A可逆。

证明二

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
MySQL千万级多表关联SQL语句调优
查看>>
mysql千万级大数据SQL查询优化
查看>>
MySQL千万级大表优化策略
查看>>
MySQL单实例或多实例启动脚本
查看>>
MySQL压缩包方式安装,傻瓜式教学
查看>>
MySQL原理、设计与应用全面解析
查看>>
MySQL原理简介—1.SQL的执行流程
查看>>
MySQL原理简介—10.SQL语句和执行计划
查看>>
MySQL原理简介—11.优化案例介绍
查看>>
MySQL原理简介—12.MySQL主从同步
查看>>
MySQL原理简介—2.InnoDB架构原理和执行流程
查看>>
MySQL原理简介—3.生产环境的部署压测
查看>>
MySQL原理简介—6.简单的生产优化案例
查看>>
MySQL原理简介—7.redo日志的底层原理
查看>>
MySQL原理简介—8.MySQL并发事务处理
查看>>
MySQL原理简介—9.MySQL索引原理
查看>>
MySQL参数调优详解
查看>>
mysql参考触发条件_MySQL 5.0-触发器(参考)_mysql
查看>>
MySQL及navicat for mysql中文乱码
查看>>
MySqL双机热备份(二)--MysqL主-主复制实现
查看>>